Gravity-Driven Flow of a Shear-Thinning Power– Law Fluid over a Permeable Plane

نویسنده

  • Cristiana Di Cristo
چکیده

The flow of a thin layer of power-law fluid on a porous inclined plane is considered. The unsteady equations of motion are depth-integrated according to the von Karman momentum integral method. The variation of the velocity distribution with the depth is accounted for, and it is furthermore assumed that the flow through the porous medium is governed by the modified Darcy’s law. The stability condition is deduced considering the hierarchy of kinematic and gravity waves. The response of the linearized model to a Dirac-delta disturbance in unbounded domain is analytically deduced, in both stable and unstable conditions 1624 C. Di Cristo, M. Iervolino and A. Vacca of flow. The influence of the effect of power-law exponent and bottom permeability on the disturbance propagation is finally analyzed, suggesting indications about the choice of the bottom permeability in order to improve the performance of industrial processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study about the Effect of Turbines Pitched Blade Attack Angle on the Power Consumption of a Stirred Tank

In this study, the stirring mechanism of shear-thinning fluids benefiting from four blades in turbulent flow is considered. The fluid is studied inside a stirred cylindrical tank with a flat bottom. The height of fluid is equal to the cylinder’s diameter and the impeller is positioned centrally. A CFD simulation has been carried out and three-dimensional turbulent flow is numerically analyzed u...

متن کامل

The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential

Due to the increasingly wide application of electroosmotic flow in micromachines, this paper investigates the electroosmotic flow of the power-law fluid under high zeta potential in a cylindrical microcapillary for different dimensionless parameters. The electric potential distribution inside a cylindrical microcapillary is presented by the complete Poisson-Boltzmann equation applicable to an a...

متن کامل

Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids

Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids are investigated by direct numerical simulation. Previous works on this topic for Newtonian fluids show that the two-dimensional channel can be divided into alternating regions defined by the stability of the particle’s equilibrium. We observe stability regions with the same pattern in flows of shear thinnin...

متن کامل

Analytical study of flow field and heat transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall

In this study, the momentum and energy equations of laminar flow of a non-Newtonian fluid are solved in an axisymmetric porous channel using the least square and Galerkin methods. The bottom plate is heated by an external hot gas, and a coolant fluid is injected into the channel from the upper plate. The arising nonlinear coupled partial differential equations are reduced to a set of coupled no...

متن کامل

Lattice Boltzmann Simulation of Non-newtonian Fluid Flow in a Lid Driven Cavity

Lattice Boltzmann Method (LBM) is used to simulate the lid driven cavity flow to explore the mechanism of non-Newtonian fluid flow. The power law model is used to represent the class of non-Newtonian fluids (shear-thinning and shear-thickening fluids) by considering a range of 0.8 to 1.6. Investigation is carried out to study the influence of power law index and Reynolds number on the variation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013